Математическое ожидание случайной величины ~ Дисперсия случайной величины ~ Моменты ~ Ассиметрия ~ Эксцесс ~ Среднее геометрическое и среднее гармоническое
Каждая случайная величина полностью определяется своей функцией распределения.
В то же время при решении практических задач достаточно знать несколько числовых параметров, которые позволяют представить основные особенности случайной величины в сжатой форме. К таким величинам относятся в первую очередь математическое ожидание и дисперсия.
Математическое ожидание случайной величины
Математическое ожидание - число, вокруг которого сосредоточены значения случайной величины. Математическое ожидание случайной величины x обозначается Mx .
Математическое ожидание дискретной случайной величины x , имеющей распределение
x1 |
x2 |
... |
xn |
p1 |
p2 |
... |
pn |
называется величина , если число значений случайной величины конечно.
Если число значений случайной величины счетно, то . При этом, если ряд в правой части равенства расходится, то говорят, что случайная величина x не имеет математического ожидания.
Математическое ожидание непрерывной случайной величины с плотностью вероятностей px (x) вычисляется по формуле . При этом, если интеграл в правой части равенства расходится, то говорят, что случайная величина x не имеет математического ожидания.
Если случайная величина h является функцией случайной величины x , h = f(x), то
.
Аналогичные формулы справедливы для функций дискретной случайной величины:
, .
Основные свойства математического ожидания:
- математическое ожидание константы равно этой константе, Mc=c ;
- математическое ожидание - линейный функционал на пространстве случайных величин, т.е. для любых двух случайных величин x , h и произвольных постоянных a и b справедливо: M(ax + bh ) = a M(x )+ b M(h );
- математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий, т.е. M(x h ) = M(x )M(h ).
Дисперсия случайной величины
Дисперсия случайной величины характеризует меру разброса случайной величины около ее математического ожидания.
Если случайная величина x имеет математическое ожидание Mx , то дисперсией случайной величины x называется величина Dx = M(x - Mx )2.
Легко показать, что Dx = M(x - Mx )2= Mx 2 - M(x )2.
Эта универсальная формула одинаково хорошо применима как для дискретных случайных величин, так и для непрерывных. Величина Mx 2 >для дискретных и непрерывных случайных величин соответственно вычисляется по формулам
, .
Для определения меры разброса значений случайной величины часто используется среднеквадратичное отклонение , связанное с дисперсией соотношением .
Основные свойства дисперсии:
- дисперсия любой случайной величины неотрицательна, Dx 0;
- дисперсия константы равна нулю, Dc=0;
- для произвольной константы D(cx ) = c2D(x );
- дисперсия суммы двух независимых случайных величин равна сумме их дисперсий: D(x ± h ) = D(x ) + D (h ).
Моменты
В теории вероятностей и математической статистике, помимо математического ожидания и дисперсии, используются и другие числовые характеристики случайных величин. В первую очередь это начальные и центральные моменты.
Начальным моментом k-го порядка случайной величины x называется математическое ожидание k-й степени случайной величины x , т.е. a k = Mx k.
Центральным моментом k-го порядка случайной величины x называется величина m k, определяемая формулой m k = M(x - Mx )k.
Заметим, что математическое ожидание случайной величины - начальный момент первого порядка, a 1 = Mx , а дисперсия - центральный момент второго порядка,
a 2 = Mx 2 = M(x - Mx )2 = Dx .
Существуют формулы, позволяющие выразить центральные моменты случайной величины через ее начальные моменты, например:
m 2=a 2-a 12, m 3 = a 3 - 3a 2a 1 + 2a 13.
Если плотность распределения вероятностей непрерывной случайной величины симметрична относительно прямой x = Mx , то все ее центральные моменты нечетного порядка равны нулю.
Асимметрия
В теории вероятностей и в математической статистике в качестве меры асимметрии распределения является коэффициент асимметрии, который определяется формулой ,
где m 3 - центральный момент третьего порядка, - среднеквадратичное отклонение.
Эксцесс
Нормальное распределение наиболее часто используется в теории вероятностей и в математической статистике, поэтому график плотности вероятностей нормального распределения стал своего рода эталоном, с которым сравнивают другие распределения. Одним из параметров, определяющих отличие распределения случайной величины x , от нормального распределения, является эксцесс.
Эксцесс g случайной величины x определяется равенством .
У нормального распределения, естественно, g = 0. Если g (x ) > 0, то это означает, что график плотности вероятностей px (x) сильнее “заострен”, чем у нормального распределения, если же g (x ) < 0, то “заостренность” графика px (x) меньше, чем у нормального распределения.
Среднее геометрическое и среднее гармоническое
Среднее гармоническое и среднее геометрическое случайной величины - числовые характеристики, используемые в экономических вычислениях.
Средним гармоническим случайной величины, принимающей положительные значения, называется величина .
Например, для непрерывной случайной величины, распределенной равномерно на [a, b],
0 < a < b, среднее гармоническое вычисляется следующим образом:
и .
Средним геометрическим случайной величины, принимающей положительные значения, называется величина .
Название “среднее геометрическое” происходит от выражения среднего геометрического дискретной случайной величины, имеющей равномерное распределение
x |
a1 |
a2 |
a3 |
... |
an |
p |
1/n |
1/n |
1/n |
... |
1/n |
Среднее геометрическое, вычисляется следующим образом:
,
т.е. получилось традиционное определение среднего геометрического чисел a1, a2, …, an.
Например, среднее геометрическое случайной величины, имеющей показательное распределение с параметром l , вычисляется следующим образом:
, .
Здесь С » 0.577 - постоянная Эйлера.
|