Matlab  |  Mathcad  |  Maple  |  Mathematica  |  Statistica  |  Другие пакеты Поиск по сайту
Internet-класс  |  Примеры  |  Методики  |  Банк задач  |  Консультации & Форум  |  Download  |  Ссылки  |  Конкурсы
Научно-практический журнал "Exponenta Pro. Математика в приложениях". Вышел 1/2004 номер журнала
Руководство пользователя Mathcad 6.0 и Mathcad PLUS 6.0

 

Список встроенных функций

Краткий обзор глав руководства пользователя
К следующему разделу

 

Переменные и константы

Эта глава описывает допустимые имена переменных и функций Mathcad, предопределенные переменные подобные , а также представления чисел.
Mathcad оперирует комплексными числами так же легко, как и вещественными. Переменные Mathcad могут принимать комплексные значения, и большинство встроеннных функций определено для комплексных аргументов. В настоящей главе описывается использование комплексных чисел в Mathcad.

 

Векторы и матрицы

Эта глава описывает массивы в Mathcad. В то время как обычные переменные (скаляры) хранят одиночное значение, массивы хранят много значений. Как обычно принято в линейной алгебре, массивы, имеющие только один столбец, будут часто называться векторами, все прочие — матрицами.

 

Дискретные аргументы

Дискретный аргумент — переменная, которая принимает ряд значений при каждом её использовании. Дискретные аргументы значительно расширяют возможности Mathcad, позволяя выполнять многократные вычисления или циклы с повторяющимися вычислениями.

Эта глава описывает дискретные аргументы и показывает, как использовать их, чтобы выполнять итерационные вычисления, отображать таблицы чисел и облегчать ввод многих числовых значений в таблицу.

 

Операторы

В Mathcad используются обычные операторы, подобные + и /, а также операторы, определенные для матриц, например,  операторы транспонирования и нахождения детерминанта, и специальные операторы типа вычисления интегралов и производных.

Эта глава содержит список операторов Mathcad и описывает, как вводить и использовать специальные операторы.

 

Встроенные функции

В этой главе перечислены и описаны многие из встроенных функций Mathcad. Статистические функции Mathcad описаны в Главе “Статистические функции”. Функции, используемые для работы с векторами и матрицами, описаны в Главе “Векторы и матрицы”.

 

Статистические функции

В данной главе приводится перечень, и дается описание встроенных функций пакета Mathcad. Эти функции выполняют широкий спектр вычислительных заданий, включая статистический анализ, интерполяцию и регрессионный анализ.

 

Программирование

Mathcad PLUS позволяет писать программы. Программа в Mathcad есть выражение, в свою очередь, состоящее из других выражений. Программы Mathcad содержат конструкции, во многом подобные программным конструкциям языков программирования: условные передачи управления, операторы циклов, области видимости переменных, использование подпрограмм и рекурсии.

Написание программ в Mathcad позволяет решить такие задачи, которые невозможно или очень трудно решить другим способом.

 

Решение уравнений

Настоящая глава описывает, как при помощи Mathcad решать уравнения и системы уравнений. Можно решать как одно уравнение с одним неизвестным, так и системы уравнений с несколькими неизвестными. Максимальное число уравнений и неизвестных в системе равно пятидесяти.

 

Решение дифференциальных уравнений

Эта глава описывает, как при помощи Mathcad решать вещественнозначные обыкновенные дифференциальные уравнения (ОДУ) и дифференциальные уравнения в частных производных. Mathcad содержит широкий набор функций для решения дифференциальных уравнений. Некоторые из этих функций используют специфические свойства конкретного дифференциального уравнения, чтобы обеспечить достаточное быстродействие и точность при поиске решения. Другие полезны, когда требуется не просто получить решение дифференциального уравнения, но и построить график искомого решения.

 

Символьные вычисления

Эта глава описывает символьные преобразования  в Mathcad.

 

Файлы данных

Mathcad читает и записывает файлы данных — файлы ASCII, содержащие числовые данные. Читая файлы данных, можно брать данные из различных источников и анализировать их в Mathcad. Записывая файлы данных, можно экспортировать результаты Mathcad в текстовые процессоры, электронные таблицы и другие прикладные программы.

Mathcad включает два набора функций для чтения и записи данных. READ, WRITE и APPEND читают или записывают одно числовое значение за раз. READPRN, WRITEPRN и APPENDPRN считывают целую матрицу из файла со строками и столбцами данных или записывают в виде такого файла матрицу из Mathcad.

 

Графики

Графики в Mathcad являются и универсальными, и легкими в использовании. Чтобы создать график, щёлкните в месте, где нужно вставить график, выберите Декартов график из меню Графика и заполните пустые поля. Можно всячески форматировать графики, изменяя вид осей и начертания кривых и испольуя различные метки.

 

Полярные графики

В ряде случаев при построении графиков удобнее пользоваться полярными, а не декартовыми координатами. Mathcad позволяет строить полярные графики.

 

Графики поверхностей

В рабочие документы Mathcad можно включать наряду с двумерными и трехмерные графики. В отличие от двумерных графиков, которые используют дискретные аргументы и функции, трехмерные графики требуют матрицы значений. Эта глава показывает, как можно матрицу представить в виде поверхности в трехмерном пространстве.

В данной главе рассматривается создание, использование и форматирование поверхностей в трехмерном пространстве. В последующих главах описывается, как работать с другими типами графиков.

 

Карты линий уровня

Описанные в настоящей главе графики позволяют отображать линии уровня. Это линии, вдоль которых величина функции, заданной на плоскости двух переменных, остается постоянной. В Mathcad можно создать карту линий уровня так же, как и поверхностный график: задавая функцию матрицей её значений, в которой каждая строка и столбец соответствует определенным значениям аргументов. В этой главе описывается, как можно матрицу представить в виде карты линий уровня.

 

Трехмерные гистограммы

Трехмерные гистограммы предоставляют дополнительные возможности визуализации данных. С их помощью матрица чисел может быть представлена в виде совокупности столбиков различной высоты. Можно показывать столбики либо там, где они находятся в матрице, или помещая один над другим, или располагая по одной линии.

 

Точечные графики

При использовании других типов трехмерных графиков необходимо образовать матрицу, в которой строки и столбцы соответствуют значениям x и y, а величина элемента матрицы определяет координату z. При построении точечного графика можно непосредственно определять координаты x, y и z любой совокупности точек. Поэтому данный тип графиков полезен для рисования параметрических кривых или для наблюдения совокупностей (кластеров) данных в трехмерном пространстве. В этой главе показывается, как можно использовать три вектора, чтобы создать точечный график.

 

Графики векторных полей

В этой главе описывается, как создавать двумерное векторное поле, представляя двумерные векторы как комплексные числа.

 

В начало страницы  К следующему разделу

Список встроенных функций

Карта сайта | На первую страницу | Поиск |О проекте |Сотрудничество |
Exponenta Pro | Matlab.ru

Наши баннеры


Copyright © 2000-2003. Компания SoftLine. Все права защищены.

Дата последнего обновления информации на сайте: 11.05.04
Сайт начал работу 1.09.00

Программное обеспечение Microsoft, Macromedia, VERITAS, Novell, Borland, Symantec, Oracle и др.