|
|
||||||||||||||||||||||||||||||||
Вход |
Раздел "Обработка сигналов и изображений\ Image Processing Toolbox"
И.М.Журавель "Краткий курс теории обработки изображений"В оглавление книги\ К следующему разделу \ К предыдущему разделу Фильтрация изображений: Обобщенная линейная фильтрация При проектировании фильтров или, в более общем случае, систем для обработки сигналов, линейные системы играют существенную роль. Когда производится проектирование линейной части системы обработки сигналов, в большинстве случаев можно обосновать принятые решения и вести проектирование с помощью формальных расчетных процедур. С другой стороны, при расчете нелинейной части чаще всего приходится руководствоваться интуицией и эмпирическими суждениями. Понятие обобщенной суперпозиции дает возможность, по крайней мере в некоторых случаях, применить к классу задач нелинейной фильтрации формальный метод, который является расширением формального подхода, лежащего в основе линейной фильтрации [2]. Задача линейной фильтрации как это констатируется, связана с применением линейной системы для извлечения сигнала из суммы сигнала и шума. С точки зрения векторного пространства задачей линейной фильтрации можно считать определение такого линейного преобразования в векторном пространстве, которое сводит длину или норму вектора ошибки к минимуму. Норма для данного векторного пространства определяет используемый критерий ошибки. Во многих случаях, когда сигнал суммируется с шумом, линейная система не является лучшей системой. Рассмотрим, например, квантованный сигнал с уровнями квантования 1, 2, 3,..., и допустим, что к нему добавились шумы с пиковыми значениями ±0,25. Ясно, что сигнал может быть точно восстановлен с помощью квантизатора, хотя его нельзя формально обосновать как оптимальный нелинейный фильтр. В менее очевидных случаях могут существовать одновременно формальные обоснования как для "лучшего" линейного фильтра, так и для «лучшего» нелинейного фильтра из некоторого класса, но при этом не всегда может быть проведено полное и точное сравнение этих фильтров, хотя бы из-за того, что они часто используют различную информацию о входных сигналах. Обобщение понятия линейной фильтрации может производиться при фильтрации сигнала и шума, которые комбинируются неаддитивно, лишь при условии, что правило их комбинирования удовлетворяет алгебраическим постулатам векторного сложения. Например, если нужно восстановить сигнал s(t) после такого воздействия шума n(t), что принятым сигналом является s(t)On(t), то необходимо связать s(t) и n(t) с векторами в векторном пространстве, а операцию О с векторным сложением. Тогда класс линейных преобразований в этом векторном пространстве окажется связанным с классом гомоморфных систем, для которых операция О является входной и выходной операцией. Таким образом, при обобщении проблемы линейной фильтрации получают задачу гомоморфной фильтрации. Здесь класс фильтров, из которого должен быть выбран оптимальный, будет классом таких гомоморфных систем, входные и выходные операции которых производятся по правилу, согласно которому объединены выделяемые сигналы. Если x1 и х2 обозначают два сигнала, которые объединяются с помощью операции О, то каноническая форма для класса гомоморфных фильтров, которые можно было бы использовать для восстановления x1 или х2, имеет вид, приведенный на рис. 1.
Рис. 1. Каноническая форма класса гомоморфных фильтров, используемых для разделения сигналов, объединенных с помощью операции О. Система и обратная ей являются характеристическими для этого класса, и, следовательно, при выборе системы из класса необходимо определить только линейную систему . Кроме того, мы видим что, поскольку система гомоморфна с входной операцией O и выходной операцией +, то входным сигналом линейной системы является . Так как выходной сигнал линейного фильтра затем преобразуется с помощью обращения и так как сигнал должен быть восстановлен из комбинации , то требуемым выходным сигналом линейной системы является . Следовательно, задача сводится к линейной фильтрации, и может полностью применяться формальный аппарат. Следует подчеркнуть, что подход к нелинейной фильтрации, основанный на обобщенной суперпозиции, является лишь одним из многих возможных подходов. Основное его ценное качество состоит в том, что так же, как и при линейной фильтрации просуммированных сигналов, он удобен с точки зрения анализа и фактически сводится к проблеме линейной фильтрации. Хотя на практике при решении большинства задач линейной фильтрации для оптимального выбора фильтра обычно не выполняются формальные расчеты, критерием ошибки, получившим самое широкое распространение, является среднеквадратическая ошибка (или интегральная квадратическая ошибка для апериодических сигналов). При рассмотрении критерия ошибки для гомоморфных фильтров естественно было бы выбрать такой тип критерия, который позволяет выбирать линейный фильтр на основе среднеквадратической ошибки. Этот выбор может быть обоснован формально, но в любом случае естественно считать, что система оптимизируется, если оптимизируется линейный фильтр. К двум типам задач, где оказалась полезной идея гомоморфной фильтрации, относятся фильтрация перемноженных сигналов и фильтрация свернутых сигналов. Применение гомоморфной фильтрации Рассмотрим некоторые специфические случаи применения гомоморфной фильтрации и фильтрации перемноженных и свернутых сигналов. Ограничимся рассмотрением только двух примеров применения, а именно сжатия динамического диапазона и усиления контрастности изображений. Гомоморфная обработка изображений Как показал Стокхэм [1], образование изображения является преимущественно мультипликативным процессом. В естественных условиях наблюдаемая яркость, запечатленная на сетчатке глаза или на фотографической пленке, может рассматриваться как произведение двух составляющих: функции освещенности и функции отражательной способности. Функция освещенности описывает освещенность спектра в различных точках, и ее можно считать независимой от предметов, расположенных на этой сцене. Функция отражательной способности характеризует детали сцены и может считаться независимой от освещенности. Таким образом, изображение может быть представлено как двумерный пространственный сигнал, выраженный в форме , где — изображение, — составляющая освещенности, a — составляющая отражательной способности. Отрицательные значения яркости по физическим причинам исключаются, а нулевая яркость исключается по практическим соображениям. При обработке изображения часто возникают две задачи — сжатие динамического диапазона и усиление контрастности. Первая из их вызвана тем, что часто встречаются сцены с чрезмерными отношениями уровня светлого к уровню темного, что приводит к слишком большому динамическому диапазону по сравнению с возможностями имеющегося приемника, например фотографической пленки. Решение состоит в записи модифицированной интенсивности , связанной с в следующем виде: (1) Параметр хорошо известен фотографам, которые выбором фотоматериалов и изменением времени проявления регулируют численное значение . Когда выбрано положительным, но меньшим единицы, происходит сжатие динамического диапазона. Другая задача состоит в такой обработке изображения, которая увеличивала бы контрастность, придавая большую четкость краям предметов. Это усиление контрастности часто достигается модификацией картины распределения пространственной яркости в соответствии с (1) при , выбранном больше единицы. Ясно, что при таком специфическом подходе сжатие динамического диапазона и усиление контрастности являются противоречивыми задачами. Сжатие динамического диапазона, достигаемое при использовании , меньшего единицы, вызывает уменьшение контрастности и может дать темное или размытое изображение. Усиление контрастности, достигнутое применением , большего единицы, увеличивает динамический диапазон изображения, причем в результате этого часто еще более затрудняется возможность передачи этого диапазона. Для получения приемлемой аппроксимации сжатие динамического диапазона можно рассматривать как проблему, сосредоточенную на функции освещенности , а усиление контрастности — как проблему, сосредоточенную на функции отражательной способности , т.е. считать, что большие динамические диапазоны, встречающиеся в естественных изображениях, обусловлены главным образом большим изменением освещенности, в то время как очертания краев предметов связаны только с составляющей отражательной способности. Таким образом, можно отдельно ввести функции отражательной способности и освещенности, модифицировать каждую из них различными показателями степени и затем восстановить их для того, чтобы сформировать модифицированное изображение. При таком подходе модифицированная яркость , где меньше единицы для сжатия динамического диапазона и больше единицы для усиления контрастности. Имея перед собой эту задачу, можно говорить об обработке изображения с помощью гомоморфного фильтра, т.е. о раздельной обработке составляющих освещенности и отражательной способности. Такое устройство обработки изображения могло бы иметь вид, показанный на рис. 2. Функция освещенности обычно изменяется медленно, в то время как отражательная способность часто (но не всегда) изменяется быстро, так как предметы изменяют структуру и размеры и почти всегда имеют хорошо очерненные края. Если бы и имели частотные составляющие, занимающие отдельные области пространственных частот, то их можно было бы обработать по отдельности в соответствии с рис. 2.
Рис. 2. Каноническая форма устройства обработки изображения, производящего раздельное изменение компонент освещенности и отражательной способности исходного изображения. Целесообразно предположить, что содержит главным образом низкие пространственные частоты. Быстрые изменения в способствуют появлению высоких пространственных частот в , хотя отражательная способность вносит некоторый вклад и в низкие пространственные частоты. Таким образом, возможна только частично независимая обработка. Тем не менее на практике оказалось полезным связать низкие пространственные частоты с , а высокие пространственные частоты — с . При таком предположении линейный фильтр (рис. 3) выбирался так, чтобы он производил умножение низких пространственных частот на и высоких пространственных частот на .
Рис. 3. Частотная характеристика линейного фильтра (рис. 2) для одновременного сжатия динамического диапазона и усиления контрастности. При выполнении этой обработки частотная характеристика фильтра выбиралась так, чтобы она имела общий вид, как на рис. 3, и была изотропной с нулевой фазой. Линейная обработка проводилась с применением методов высокоскоростной свертки, выполняемых в двух измерениях. На рис. 4 приведены два примера изображений, обработанных таким образом для одновременного изменения динамического диапазона и усиления контрастности.
Рис. 4. Изображения а) и в) после обработки с целью одновременного изменения (растяжения или сжатия) динамического диапазона и усиления контрастности. Результаты обработки представлены на рис. 4 б) и г) соответственно.
В оглавление книги \ К следующему разделу \ К предыдущему разделу |
Всероссийская научная конференция "Проектирование научных и инженерных приложений в среде MATLAB" (май 2002 г.)
|
||
На первую страницу \ Сотрудничество \ MathWorks \ SoftLine \ Exponenta.ru \ Exponenta Pro | ||
E-mail: | ||
Информация на сайте была обновлена 11.05.2004 |
Copyright 2001-2004 SoftLine Co Наши баннеры |