Matlab  |  Mathcad  |  Maple  |  Mathematica  |  Statistica  |  Другие пакеты Поиск по сайту
Internet-класс  |  Примеры  |  Методики  |  Банк задач  |  Консультации & Форум  |  Download  |  Ссылки  |  Конкурсы
Научно-практический журнал "Exponenta Pro. Математика в приложениях". Вышел 1/2004 номер журнала
Курс ОДУ.
Готовые занятия
 
Занятие 1
Теоретический материал Теоретическая справка Примеры Задачи для самостоятельного решения Контрольные вопросы

Решение ~ Общее и частное решение ~ Интегральная кривая ~ Поле направлений ~ Задача Коши ~ Теорема существования и единственности ~ Нормальная форма

 

Обыкновенным дифференциальным уравнением первого порядка называется уравнение вида

F(x, y, y' )=0,     

где F — известная функция трех переменных, определенная в области G из R3,   x — независимая переменная из интервала (a, b), y(x) — неизвестная функция, y'(x) — ее производная.  

Обыкновенные дифференциальные уравнения, разрешенные относительно производной, т.е. уравнения вида 

y'=f(x, y)

называют уравнениями в нормальной форме.

 

ПРИМЕР 1. Различные формы записи дифференциальных уравнений первого порядка.

 

Функция y=y(x) называется решением дифференциального уравнения, если она непрерывно дифференцируема на (a, b) и при всех x из (a, b) удовлетворяет уравнению F(x, y(x), y'(x))=0.

 

ПРИМЕР 2. Проверка правильности решения дифференциального уравнения первого порядка.

 

График решения дифференциального уравнения называют интегральной кривой дифференциального уравнения.

 

ПРИМЕР 3. Интегральные кривые и графики решений дифференциальных уравнений.

 

Для дифференциального уравнения y'=f(x, y), правая часть которого f(x, y) и ее частная производная по y непрерывны в некоторой области D имеет место геометрическая интерпретация, называемая полем направлений.

Если через каждую точку (x, y) области D провести некоторый отрезок l(x, y) с угловым коэффициентом, равным значению правой части f(x, y) в точке (x, y), то получится изображение, которое называется "полем направлений". Любая интегральная кривая y=y(x) в каждой своей точке (x, y(x)) касается отрезка l(x, y).

 

ПРИМЕР 4. Поле направлений и интегральные кривые.

 

Если дифференциальное уравнение первого порядка y'=f(x, y), имеет решение, то   решений у него, вообще говоря, бесконечно много и эти решения могут быть записаны в виде y=y(x,C), где C — произвольная константа.
Выражение y(x,C) называют общим решением дифференциального уравнения 1-го порядка:
при всех допустимых значениях C функция y=y(x,C) является решением уравнения,
y'(x,C)=f(x, y(x, C));
для любого наперед заданного решения y=f(x) найдется такое значение константы C, C=С*, что y(x,C*)=f(x).  

 

ПРИМЕР 5. Общее решение дифференциального уравнения.

 

Однако, если поставить задачу: найти решение, удовлетворяющее условию y(x0)=y0, то при определенных условиях такая задача имеет единственное решение.  Задача об отыскании решения y=y(x) дифференциального уравнения y'=f(x, y), удовлетворяющего начальному условию y(x0)=y0, называется задачей Коши. Решение задачи Коши называют частным решением.

Справедлива следующая теорема существования и единственности решения задачи Коши

Если функция f(x, y) и ее частная производная по y непрерывны в области D, (x0, y0)ОD, то на некотором интервале (x0-h, y0+h) существует единственное решение y=y(x) уравнения y'=f(x, y), удовлетворяющее начальному условию y(x0)=y0.

Теорема существования и единственности имеет простую геометрическую интерпретацию: если условия теоремы выполнены в области D, то через каждую точку (x0, y0)ОD проходит только одна интегральная кривая y=y(x,C0) семейства y=y(x,C) такая, что y(x0,C0)=y0.

 

ПРИМЕР 6. Пример нарушения единственности решения задачи Коши.

 

В начало страницы

Примеры Задачи для самостоятельного решения Контрольные вопросы
Карта сайта | На первую страницу | Поиск |О проекте |Сотрудничество |
Exponenta Pro | Matlab.ru

Наши баннеры


Copyright © 2000-2003. Компания SoftLine. Все права защищены.

Дата последнего обновления информации на сайте: 11.05.04
Сайт начал работу 1.09.00

Программное обеспечение Microsoft, Macromedia, VERITAS, Novell, Borland, Symantec, Oracle и др.