Определенный интеграл, его геометрический смысл ~Формула Ньютона-Лейбница ~ Методы вычисления определенного интеграла
Определенный интеграл, его геометрический смысл.
Рассмотрим функцию , определенную на промежутке . Разобьем промежуток на произвольных частей точками и обозначим , , . На каждом промежутке возьмем произвольную точку и вычислим в ней значение функции. Выражение называется интегральной суммой функции на .Если при существует и конечен предел последовательности частичных сумм , не зависящий ни от способа разбиения промежутка точками , ни от выбора , то этот предел называют определенным интегралом от функции по промежутку , а саму функцию — интегрируемой на . Обозначают .
Из приведенного определения естественно следует геометрический смысл определенного интеграла: если , то равен площади фигуры, ограниченной графиком функции, осью абсцисс и прямыми .
ПРИМЕР 1. Вычисление определенного интеграла как предела интегральной суммы.
Формула Ньютона-Лейбница.
Значение определенного интеграла может быть вычислено по формуле Ньютона-Лейбница =, здесь символ означает, что из значения при верхнем пределе b нужно вычесть значение при нижнем пределе a , — первообразная функция для . Таким образом, вычисление определенного интеграла сводится к нахождению первообразной, то есть неопределенного интеграла.
ПРИМЕР 2. Вычисление определенного интеграла.
Методы вычисления определенного интеграла.
Если — непрерывно дифференцируемая на отрезке функция, , и , когда изменяется на , то, положив , получим формулу замены переменной в определенном интеграле .
Пусть - непрерывно дифференцируемые функции. Тогда справедлива формула интегрирования по частям . Эта формула применяется для тех же классов функций, что и при вычислении неопределенного интеграла.
ПРИМЕР 3. Замена переменной и интегрирование по частям в определенном интеграле
|