![]() |
|||||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||
![]() |
![]() |
||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||
![]() |
![]() |
Вход | ![]() |
Раздел "Математика\Neural Network Toolbox" Практическое занятие 1. Создание однонаправленной сети В оглавление \ К следующему разделу \ К предыдущему разделу Цель занятия – продемонстрировать основные этапы реализации нейронно-сетевого подхода для решения конкретной задачи. Можно выделить 4 основных этапа: В качестве примера рассмотрим следующую задачу: 1. Подготовка данных для обучения сети В первую очередь необходимо определиться с размерностью входного массива. Для подготовки входного и эталонного массивов воспользуемся следующим алгоритмом. Выбираем случайным образом значения компонент вектора – эталона С,A S и вычисляем компоненты соответствующего входного вектора. Повторяем эту процедуру М раз и получаем массив входных векторов в виде матрицы размерностью NxM и массив векторов – эталонов в виде матрицы размерностью в нашем случае 3хМ. Полученные массивы мы можем использовать для обучения сети. Прежде чем приступать к формированию обучающих массивов необходимо определиться с некоторыми свойствами массивов.
Тестовые массивы и эталоны подготовим с помощью программы mas1: % формирование входных массивов (входной массив P) и (эталоны T) С помощью этой программы формируется матрица P из M=100 входных векторов-столбцов, каждый из которых сформирован из 21 точки исходной функции со случайно выбранными значениями параметров C,A,S, и матрица T эталонов из 100 эталонных векторов-столбцов, каждый из которых сформирован из 3 соответствующих эталонных значений. Матрицы P и T будут использованы при обучении сети. Следует отметить, что при каждом новом запуске этой программы будут формироваться массивы с новыми значениями компонентов векторов, как входных, так и эталонных. Вообще, выбор архитектуры сети для решения конкретной задачи основывается на опыте разработчика. Поэтому предложенная ниже архитектура сети является одним вариантом из множества возможных конфигураций. Следующий шаг – обучение созданной сети. Перед обучением необходимо задать параметры обучения. Задаем функцию оценки функционирования sse. Таким образом, обучение сети окончено. Теперь эту сеть можно сохранить в файле nn1.mat: Перед тем, как воспользоваться нейронной сетью, необходимо исследовать степень достоверности результатов вычислений сети на тестовом массиве входных векторов. В качестве тестового массива необходимо использовать массив, компоненты которого отличаются от компонентов массива, использованного для обучения. В нашем случае для получения тестового массива достаточно воспользоваться еще раз программой mas1. Для оценки достоверности результатов работы сети можно воспользоваться результатами регрессионного анализа, полученными при сравнении эталонных значений со значениями, полученными на выходе сети когда на вход поданы входные векторы тестового массива. В среде MATLAB для этого можно воспользоваться функцией postreg. Следующий набор команд иллюстрирует описанную процедуру: >> [m,b,r]=postreg(y(2,:),T(2,:)); >> [m,b,r]=postreg(y(3,:),T(3,:)); Как видно из рисунков, наша сеть отлично решает поставленную задачу для всех трех выходных параметров. Сохраним обученную сеть net на диске в файл nn1.mat 5. Моделирование сети. (Использование сети для решения поставленной задачи) Для того, чтобы применить обученную сеть для обработки данных, необходимо воспользоваться функцией sim: В оглавление \ К следующему разделу \ К предыдущему разделу |
![]() |
||
Всероссийская научная конференция "Проектирование научных и инженерных приложений в среде MATLAB" (май 2002 г.)
|
||
На первую страницу \ Сотрудничество \ MathWorks \ SoftLine \ Exponenta.ru \ Exponenta Pro | ||
E-mail: | ||
Информация на сайте была обновлена 15.04.2003 |
Copyright 2001-2003 SoftLine Co Наши баннеры |