![]() |
|||||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||
![]() |
![]() |
||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||
![]() |
![]() |
Вход | ![]() |
Раздел "Обработка сигналов и изображений\ Image Processing Toolbox"
И.М.Журавель "Краткий курс теории обработки изображений" В оглавление книги \ К предыдущему разделу \ К следующему разделу Распознавание рукописных знаков Задача распознавания рукописных знаков окончательно еще не решена, так как существует много как теоретических, так и практических трудностей, связанных с огромным многообразием возможных написаний отдельных рукописных знаков. Многие работы в этой области так или иначе связаны с общим принципом, который получил название анализа посредством синтеза, предусматривающим, что процедура распознавания строится на основе знаний о процессе синтеза рукописных знаков. На множестве рукописных знаков выделяется несколько элементов, называемых штрихами, из которых можно построить любой символ по определенным правилам соединения штрихов. Генерируемые по этим правилам знаки представляют собой некоторый идеализированный стандарт [1]. В некоторых работах также используется принцип анализа через синтез. В них рассматриваются отдельные рукописные знаки (буквы и цифры) в процессе их написания. Предполагается, что знаки пишутся на сетчатке в виде тонких контурных линий так, как это делается при написании рукописных знаков с помощью светового карандаша на экране дисплея. Различные реализации рукописных знаков одного класса отличаются друг от друга переносом, масштабом, наклоном, пропорциями и т. д. Для обеспечения инвариантности описания к этим преобразованиям рассматриваются последовательности элементарных направлений, каждое из которых характеризует взаимное расположение двух соседних точек изображения на сетчатке. Всего выбрано восемь возможных элементарных направлений
где Последовательности, состоящие из элементов, направление и порядок следования которых сохраняются постоянными для всех реализаций знаков одного класса, называются штрихами. Искажения изображений знаков одного класса по масштабу и отношению длин отдельных участков вызывают изменение только длины соответствующих штрихов. Изменяя в допустимых пределах длину отдельных штрихов добавлением или выбрасыванием некоторого числа элементов, можно получить множество изображений одного класса. Для соблюдения пропорций знаков при их написании требуется с некоторой точностью вписывать их в рамку определенного размера. Кроме того, для каждого из штрихов изображения данного класса вводятся либо только минимальные, либо минимальные и максимальные размеры. Правило генерации рукописных знаков заключается в добавлении элементов соответствующего направления к штрихам минимальной длины изображения данного класса. В результате применения этого правила генерируются идеализированные рукописные знаки, называемые, как и при использовании принципа допустимых преобразований, эталонами данного класса:
где Воздействие шума, вызванного, например, колебанием кончика пера или дискретностью сетчатки, учитывается заданием распределения Для построения алгоритма распознавания используется метод максимального правдоподобия. Решающее правило определяется выражением
Здесь максимум ищется по всем классам и всем возможным эталонам длиной Для реализации решающего правила (1) вместо величины
где С учетом выражения (2) решающее правило может быть определено следующим образом:
Это означает, что среди всех классов Процесс синтеза эталона Здесь Эталон В некоторых работах приводится анализ ограничений на минимальную длину штрихов. Кроме того, предлагается правило синтеза эталонов, согласно которому добавление элементов в штрихи возможно только
за последним элементом штриха, что уменьшает число возможных путей на графе за счет отбрасывания остальных возможных вариантов добавления элементов. Экспериментальная проверка описанного алгоритма показала, что некоторые "трудные" знаки, например Граф представляет собой наибольший из возможных эталонов данного класса. Граф, приведенный на рис. 2, состоит из трех штрихов. Вертикальные линии графа соответствуют элементам входного изображения. Минимальная длина эталона 7, максимальная 12. Входное изображение состоит из 11 элементов. Каждая вершина графа определяется тремя координатами: Каждой вершине графа соответствует некоторая величина где Алгоритмы были проверены экспериментально моделированием их на вычислительной машине. В качестве входных изображений выбирались "трудные" изображения - наиболее близкие по написанию рукописные символы Рассмотрим коротко историю создания некоторых первых отечественных и зарубежных читающих автоматов. Заметные успехи в области практического применения систем для распознавания визуальных изображений достигнуты главным образом в создании устройств для распознавания изображений печатных букв и цифр. Существующие автоматы позволяют читать с требуемой надежностью только знаки фиксированных начертаний. Попытки создания автоматов для визуального чтения рукописных букв произвольного начертания пока нельзя считать успешными [2]. Если заглянуть в историю, то среди первых разработок, прошедших испытания, можно выделить читающие автоматы Р711 и РУТА-701 Вильнюсского СКВ вычислительных машин. Автомат Р711 разработан для чтения машинописного текста с высокой надежностью. Весь текст документа автомат прочитывает за один проход. Документы являются малоформатными и содержат не более четырех строк. Автомат может прочесть все цифры и восемь вспомогательных знаков, напечатанных типографским способом или на специальной пишущей машинке, снабженной специальными шрифтами. Кроме того, автомат может воспринимать и рукописные знаки, вписываемые в заранее напечатанные клетки. При испытании автомата Р711 вероятности отказа и ошибки для документов, которые соответствовали установленным требованиям, были порядка Автомат РУТА-701 предназначен для ввода в вычислительную машину многострочных документов. Автомат читает десять цифр и четыре служебных символа. Рукописные цифры должны, так же как и в автомате Р711, вписываться в небольшие прямоугольники, заранее напечатанные на документе краской, не воспринимаемой автоматом. Максимальная скорость чтения автомата составляет 220 знаков в секунду. Вероятность ошибки имеет порядок Существовали автоматы, в основу которых положен метод сравнения с эталоном. Критерием сходства в этом автомате служит расстояние по Хеммингу. Сначала производится центрирование изображения, а затем предварительная классификация по наличию и расположению линий знака. После этого уже осуществляется сравнение с эталоном. Автомат предназначен для чтения типографских текстов и рассчитан на несколько таких шрифтов. Эталоны всех знаков каждого шрифта хранятся в памяти и вызываются по мере необходимости в оперативную память. Скорость действия автомата около 100 знаков в секунду, вероятность ошибки - порядка Многошрифтовой автомат фирмы "Radio Corporation of America" был сконструирован так, что изображение в нем считывается с помощью электронно-лучевой трубки типа "бегущий луч" и фотоумножителя, а затем воспроизводится на экране двухлучевого кинескопа в виде позитива и негатива. С помощью оптического размножителя полученные на экране изображения проектируются на эталонные маски, которые представляют собой высококонтрастные позитивные и негативные изображения эталона. Позитивное изображение накладывается на эталон-негатив, а негативное изображение - на эталон-позитив. Степень несовпадения распознаваемого знака с данным эталоном характеризуется результирующим световым потоком по каждому каналу. Распознавание производится по наименьшему световому потоку. В каждом канале установлены фотоумножители и интеграторы, которые преобразуют световые потоки в соответствующие электрические сигналы. В автомате предусмотрена специальная система управления, которая выполняет следующие действия: переключение операций (поиск знака, поиск строки, чтение знака) и центровку знака. Кроме того, в автомате используется так называемая принудительная идеализация распознаваемых знаков. Это осуществляется с помощью специальной системы автоматического регулирования яркости и контрастности изображения распознаваемого знака, полученного на экране двухлучевого кинескопа. Автомат позволяет считывать и вводить в ЦВМ две печатные строки со стандартного бланка размером Уровень развития современных средств распознавания печатных символов достаточно высокий, что позволяет применять их даже на бытовом уровне при распознавании печатных символов отсканированных документов. Распознавание рукописных знаков остается пока открытой задачей. Литература.
В оглавление книги \ К предыдущему разделу \ К следующему разделу |
![]() |
||
Всероссийская научная конференция "Проектирование научных и инженерных приложений в среде MATLAB" (май 2002 г.)
|
||
На первую страницу \ Сотрудничество \ MathWorks \ SoftLine \ Exponenta.ru \ Exponenta Pro | ||
E-mail: | ||
Информация на сайте была обновлена 11.05.2004 |
Copyright 2001-2004 SoftLine Co Наши баннеры |