|
|
||||||||||||||||||||||||||||||||
Вход |
Раздел "Обработка сигналов и изображений\ Image Processing Toolbox"
И.М.Журавель "Краткий курс теории обработки изображений"В оглавление книги\ К предыдущему разделу Некоторые области практического применения методов обработки изображений и распознавания образов В данной работе рассматриваются результаты исследований проблем обработки визуальной информации, которые основываются на использовании методов распознавания образов [1-4, 9]. Современное развитие технологий автоматической обработки визуальной информации позволяет применять их в системах технического зрения при выполнении широкого ряда производственных операций, контроля продукции и др. На этапе исследований методов распознавания объектов на изображении целесообразно использовать систему MATLAB. С помощью функций BWLABEL, IMFEATURE и др. производится поиск и вычисление признаков объектов. ГЕОФИЗИЧЕСКИЕ НАБЛЮДЕНИЯ Вряд ли стоит здесь подробно останавливаться на роли и важности наблюдения за поверхностью Земли и других планет — это и различные спутники, и корабли многоразового использования, и орбитальные станции, и многое другое. Каждая из этих систем, наполненных различными приборами и устройствами восприятия, выдает огромные потоки информации. Поскольку число потенциальных потребителей этой информации быстро возрастает, представляется необходимым выполнять автоматическую классификацию наблюдений за минимальное время, согласованное со срочностью запросов. Идеальным было бы обрабатывать каждое изображение по мере его восприятия, т.е. в реальном масштабе времени, и выдавать результаты непосредственно заинтересованным пользователям. Перечень областей, для которых требуется выполнять орбитальные наблюдения, можно продолжать почти неограниченно. Это обнаружение облачных образований и наблюдение за их изменениями, обнаружение выбросов и загрязнения водных пространств, наблюдение за снежным покровом и ростом сельскохозяйственных культур, оценка ущерба от стихийных бедствий, обнаружение пожаров и засушливых зон, определение изменений береговой линии, обнаружение обильных снегопадов и т.д. К этому можно добавить многочисленные и разнообразные применения в военном деле. Во многих задачах возникает необходимость автоматической классификации изображений в реальном масштабе времени. Действительно, если, например, получатель информации интересуется ходом роста сельскохозяйственных культур, а изображения полей закрыты густой облачностью, то нет смысла сохранять такие изображения. И наоборот, если для потребителя представляет интерес облачный покров, то такие изображения содержат важные признаки, и они должны быть ему направлены. Рис. 1. Упрощенная схема процесса телеобнаружения: 1 – Земля; 2 – датчик; 3 – предварительная обработка на борту; 4 – передача телеметрической информации; 5 – прием телеметрической информации; 6 – обработка, классификация, распознавание; 7 – использование. Упрощенная схема системы дистанционного наблюдения показана на рис. 1. Предварительная обработка данных, выполняемая на борту спутника, необходима для уменьшения влияния атмосферных или иных помех. Такие же операции повторяются на Земле после приема информации с орбиты, наряду с другими операциями (обработки, распределения и др.). В перспективе, по мере развития космической техники, особенно в целях навигации (наземной, морской и воздушной), будут разрабатываться методы обнаружения движущихся объектов, наведения датчиков и отслеживания траекторий, которые могли бы выполняться на борту летательного аппарата. Одна из наиболее важных задач, примыкающих к этой области, это обнаружение облаков и выработка признаков для автоматического различения их от снегового покрова. Такая операция необходима для устранения ошибок при наведении навигационных приборов. Применение в сейсмологии Сейсмические волны можно наблюдать и записывать в любой точке земной поверхности. Для этого предназначены сейсмографы — приборы, обладающие чрезвычайно высокой чувствительностью к механическим колебаниям Земли. Автоматическое дешифрирование этих записей представляет огромный интерес для понимания явлений, происходящих в толще земной коры. В частности, проводились работы по выявлению различий в сейсмограммах, вызванных различными причинами — землетрясениями и ядерными взрывами. Поскольку сейсмограммы имеют достаточно большую продолжительность, то было предложено [9] отображать их в форме фраз, слов, символов. Такой же метод используется при описании биологических сигналов, в частности, электрокардиограмм и электроэнцефалограмм. Первая и наиболее серьезная трудность на этом пути — представление исходной информации. Очень важно правильно выбрать параметры первичного разбиения сигнала на отдельные отрезки. Чем они короче, тем более простым оказывается их представление, но в то же время тем длиннее становится время распознавания, так как оно растет пропорционально числу исследуемых отрезков. Кроме того, чем короче отрезки, тем они более чувствительны к шумам. В типовом режиме одна запись длится 120 с., скорость измерений — 10 отсчетов в секунду, и запись делят на 20 отрезков по 60 замеров в каждом. Типичные примеры записи сейсмограмм показаны на рис. 2. Глаз сразу усматривает сходство между кривыми а и в, а также между б и г, хотя в каждой из этих пар представлены записи, вызванные разными источниками. Это доказывает, что задача классификации не так проста, как кажется на первый взгляд. Кроме того, чем дальше размещен сейсмограф от эпицентра землетрясения или от места взрыва, тем больше визуальное сходство между сигналами. Рис. 2. Примеры сейсмограмм: а, б – землетрясения: в, г – взрывы. Для решения задачи автоматической классификации в частотной области можно было бы использовать аппарат спектрального анализа. Однако она решается и более простыми средствами, при помощи всего двух признаков, характеризующих каждый отрезок. Это соответственно энергия сигнала за время длительности отрезка и число переходов сигнала через нуль. Множество этих значений и представляет массив исходных данных. Каждый отрезок представляется двухкомпонентным вектором: хг (энергия) и х2 (число переходов через нуль). Можно использовать и другие признаки, но это приводит лишь к усложнению вычислений. Следующий этап – классификация, устанавливающая связь со словами, входящими в словарь описаний. Для классификации сейсмических волн была разработана грамматика, реализуемая на детерминированном конечном автомате. ПРИМЕНЕНИЕ В БИОЛОГИИ Электрокардиография представляет собой один из методов исследования работы сердца, основанный на записи разности электрических потенциалов, возникающей в процессе сердечной деятельности. Диагностические возможности метода исключительно широки. Разность потенциалов снимается с определенных участков поверхности кожи с помощью электродов, изготовленных из соответственно подобранного металла. Поскольку снимаемые сигналы имеют амплитуду порядка милливольт, они поступают на вход усилителя, после которого подаются на регистрацию. Схематически сердце может быть представлено в виде электрического диполя переменной длины, зависящей от сердечного ритма. Форма электрического сигнала, изменяющегося во времени, и его амплитуда зависят от точки съема. Обычно расположение электродов стандартно. Так, ЭКГ ДП соответствует разности потенциалов между правой рукой и левой ногой. Типичная осциллограмма ЭКГ-сигнала показана на рис. 3. Буквы PQRST, предложенные Эйнтховеном, позволяют в удобной форме описывать отдельные особенности этой непрерывной кривой. Периодический сигнал ЭКГ имеет сравнительно простую структуру, поэтому уже достаточно давно была предложена процедура его автоматического распознавания на основе грамматического описания [7]. Рис. 3. Типичная электрокардиограмма: 1 – электрическая ось сердца. Используемая здесь сегментация несколько отлична от той, которая была предложена Эйнтховеном. Описание ЭКГ составляется из четырех символов — р, r, b, t, каждый из которых соответствует определенному участку кривой (см. рис. 3). Символ р соответствует волне Р, r — RS-переходу, b — относительно плоской части, разделяющей экстремумы S и Т (около 0,1 с), t — волне Т. Если за начало отсчета принять волну Р, то в таких обозначениях нормальная ЭКГ может быть описана последовательностями символов: prbtb, prbtbb, prbtbbb и т. д. Синтаксические описания такого вида могут быть получены с использованием грамматики G:
Такой тип распознающего автомата весьма примитивен: он способен обнаруживать лишь грубые отклонения от нормы. В действительности анализ аномальной ЭКГ представляет собой серьезную задачу, которая выполняется квалифицированным специалистом. ПРИМЕНЕНИЕ НА ТРАНСПОРТЕ Работы по совершенствованию дорожного движения требуют изучения транспортных потоков. Для того чтобы сведения о частоте движения автомашин были достоверными, необходимо проводить измерения при прохождении автомобилями одного и того же отрезка пути. Одно из возможных решений [9] состоит в том, чтобы характеризовать каждую машину на входе контролируемого участка, а затем распознавать машины на выходе с помощью одних и тех же средств. Обработка данных, полученных таким способом, позволяет получить информацию о плотности и средней скорости движущегося потока. Известны различные методы распознавания автомашин. Один из них основан на анализе издаваемого ими шума [9], другие — на изучении их теплового портрета [1, 2, 9]. Однако опыт показывает, что для данной задачи эти методы слишком сложны. Хорошие результаты можно получить при помощи значительно более простых средств — подземных датчиков в виде индукционной петли, несложных в изготовлении и обслуживании. Принцип действия индукционного датчика достаточно прост. На проезжей части, под дорожным покрытием, расположена проволочная петля, связанная с устройством обработки данных. В результате прохождения автомашины импеданс петли изменяется (явление взаимной индукции), вызывая изменение напряжения в схеме, с которой петля соединена. Полученный сигнал после аналого-цифрового преобразования используется для обработки в ЭВМ. Два примера осциллограмм сигналов, вызванных прохождением автомашин, показаны на рис. 4. Рис. 4. Осциллограммы сигналов от автомобилей: а – легковая машина; б – грузовая машина с двухосным прицепом. Формы сигналов от легковой машины и от грузовика сильно отличаются друг от друга. Для удобства дальнейшей обработки сигналы приводят к нормализованному виду путем введения коррекции, зависящей от скорости и траектории движения. Путем распознавания этих сигналов можно получить данные о средней скорости и количестве машин в единицу времени. Этот метод может быть использован и в других областях, где приходится наблюдать за линейным перемещением как дискретных объектов, так и движущихся непрерывно (листовой прокат, проволока и т.п.). Распознавание самолетов Автоматическое распознавание летательных аппаратов (в том числе самолетов) представляет собой исключительно важную задачу для управления воздушным движением. Разумеется, хорошо известны специальные системы активного распознавания с помощью автоответчиков, принцип которых состоит в том, что автоматический приемопередатчик (автоответчик), установленный на борту самолета, излучает определенный код по запросу с Земли. Однако его использование не всегда возможно, поэтому были предложены и другие методы, в частности классификация самолетов по их контурам [5,6-8]. Были разработаны метод грамматического описания контура [9] и грамматика, объем которой должен учесть все разнообразие положений самолета относительно наблюдателя. Однако продолжительность обработки информации этим методом слишком велика и не дает возможности создания прибора, который действовал бы в реальном масштабе времени, по крайней мере, в процессе сближения с самолетом. Другой метод распознавания основан на использовании инвариантных характеристик контура самолета [9]. В качестве таких инвариант рассматриваются центральные моменты, вычисляемые по формуле: где и — координаты -й точки изображения, a и — их средние значения по множеству из точек. Были исследованы несколько моментов: и т. д. Эти моменты являются составляющими многомерного вектора, описывающего каждый контур. Группирование выполняется по правилу ближайшего соседства. Однако в работе [6] было показано, что при такой классификации несколько различных моделей самолетов попадают в один и тот же класс, а такое совпадение во многих задачах недопустимо. Третий метод заключается в представлении самолета вектором, составляющими которого являются коэффициенты разложения контура в ряд Фурье. Поскольку контур, как правило, замкнут, то его разлагают в ряд как периодическую функцию. В противном случае разомкнутый контур рассматривают как один период периодической функции [9]. Ряд Фурье записывают в виде: , где – угол отклонения радиус-вектора z. Комплексные коэффициенты ряда вычисляются: . Достоинство этого метода состоит в том, что при соответствующей нормировке такое описание не зависит от изменения масштаба, угла поворота и сдвига. Для распознавания необходимо составить библиотеку контуров всех возможных типов самолетов, подлежащих классификации. Разделение на классы выполняется по принципу минимального расстояния от границы раздела классов.
|
Всероссийская научная конференция "Проектирование научных и инженерных приложений в среде MATLAB" (май 2002 г.)
|
||
На первую страницу \ Сотрудничество \ MathWorks \ SoftLine \ Exponenta.ru \ Exponenta Pro | ||
E-mail: | ||
Информация на сайте была обновлена 11.05.2004 |
Copyright 2001-2004 SoftLine Co Наши баннеры |