Двойной интеграл в декартовых координатах ~Свойства двойного интеграла ~ Вычисление двойного интеграла ~ Тройной интеграл и его свойства ~ Вычисление тройного интеграла в декартовых координатах
Двойной интеграл в декартовых координатах. Пусть ограниченная замкнутая область плоскости с кусочно-гладкой границей и пусть функция определена и ограничена на . Посредством сетки кусочно-гладких кривых разобьем на конечное число элементарных областей с площадями (разбиение ). Пусть - наибольший из диаметров областей , получающийся при разбиении . В каждой из элементарных областей выберем произвольную точку . Число называется интегральной суммой и ставится в соответствие каждому разбиению и каждому выбору точек . Если существует и он не зависит от выбора разбиения и точек , то функция называется интегрируемой по Риману в области , а сам предел называется двойным интегралом от функции по области и обозначается или . Двойной интеграл существует, если непрерывна на . Допустимы точки разрыва первого рода, лежащие на конечном числе гладких кривых в .
Свойства двойного интеграла. Свойства двойного интеграла аналогичны свойствам определенного интеграла:
Линейность:
. Аддитивность:
, если S1 и S2 две области без общих внутренних точек.
Если для каждой точки выполнено неравенство , то .
Если интегрируема на , то функция также интегрируема, причем .
Если и наименьшее и наибольшее значения функции в области, а ее площадь, то .
Теорема о среднем значении: если непрерывна в связной области , то существует, по крайней мере, одна точка такая, что .
Вычисление двойного интеграла.
Если , где - непрерывные на функции, то двойной интеграл может быть вычислен двумя последовательными интегрированиями: . Аналогично, если , то .
ПРИМЕР 1. Вычисление двойного интеграла по прямоугольной области.
ПРИМЕР 2. Вычисление двойного интеграла по области, ограниченной сверху и снизу гладкими кривыми.
ПРИМЕР 3. Вычисление двойного интеграла по произвольной области.

Тройной интеграл и его свойства. Пусть - ограниченная замкнутая пространственная область, границей которой является кусочно-гладкая поверхность, и пусть функция определена и ограничена в . Посредством сетки кусочно-гладких поверхностей разобьем на конечное число элементарных областей с объемами (разбиение ). Пусть . наибольший из диаметров областей , получающийся при разбиении . В каждой из элементарных областей выберем произвольную точку . Число ставится в соответствие каждому разбиению и каждому выбору точек и называется интегральной суммой. Если существует и он не зависит от выбора разбиения и точек, то функция называется интегрируемой по Риману в области , а сам предел называется тройным интегралом от функции по области и обозначается . Свойства тройных интегралов такие же, как и у двойных интегралов.

Вычисление тройного интеграла в декартовых координатах. Пусть является цилиндрическим телом, проекция которого на плоскость есть область и которое ограничено снизу поверхностью , а сверху v поверхностью , где - непрерывные функции в . Тогда , то есть интегрированием по z тройной интеграл сводится к двойному интегралу по области . Для областей более сложной формы вычисление двойных и тройных интегралов производится разбиением областей на конечное число простых областей с уже рассмотренными свойствами.
ПРИМЕР 4. Вычисление тройного интеграла по прямоугольному параллелепипеду.
ПРИМЕР 5. Вычисление тройного интеграла по произвольной области.

|