|
|
||||||||||||||||||||||||||||||||
Вход |
Раздел "Обработка сигналов и изображений\ Image Processing Toolbox"
И.М.Журавель "Краткий курс теории обработки изображений" В оглавление книги \ К предыдущему разделу \ К следующему разделу Адаптивное повышение контрастности изображений Одной из наиболее удобных форм представления информации при диагностировании материалов и изделий в неразрушающем контроле, органов человека в медицине и иных областях является изображение. Это приводит к необходимости развития способов диагностики с использованием разнообразных методов. Однако одним из существенных недостатков этих методов является то, что в большинстве своем они обеспечивают формирование низкоконтрастных изображений. Поэтому основная цель методов улучшения состоит в преобразовании изображений к такому виду, что делает их более контрастными и, соответственно, более информативнее [1]. Довольно часто на изображении присутствуют искажения в определенных локальных окрестностях, которые вызваны дифракцией света, недостатками оптических систем или розфокусировкой. Это приводит к необходимости выполнения локальных преобразований на изображении. Иными словами, такой адаптивный подход дает возможность выделить информативные участки на изображении и соответствующим образом их обработать. Изложенным требованиям отвечают методы адаптивного преобразования локального контраста [2]. Методы этого класса можно представить обобщенной структурной схемой (рис. 1), где использованы такие обозначения: - исходное изображение и его элемент с координатами соответственно; - контраст элемента изображения с координатами ; - преобразованное значение контраста ; - характеристики локальных окрестностей ( - энтропия, - среднеквадратичное отклонение, - функция протяженности гистограммы); - элемент обработанного изображения с координатами . Рис. 1. Обобщенная структурная схема методов улучшения изображений с использованием адаптивного преобразования локальных контрастов. Основные шаги реализации методов адаптивного преобразования локальных контрастов такие: Шаг 1. Для каждого элемента изображения вычисляют значение локального контраста в текущей окрестности с центром в элементе с координатами . Шаг 2. Вычисляют локальную статистику для текущей скользящей окрестности . Шаг 3. Преобразуют (усиливают) локальный контраст , употребляя для этого нелинейные функции и учитывая локальную статистику текущей скользящей окрестности . Шаг 4. Восстанавливают значение яркости изображения с усиленным локальным контрастом. Шаги 1 и 2 могут выполняться в различной последовательности или параллельно. Проанализируем более детально реализацию шага 3 вышеупомянутого метода. Его суть состоит в том, что для преобразования локальных контрастов используют нелинейные монотонные функции, а для формирования адаптивной функции преобразования локального контраста выбирают степенную функцию и задают минимальное и максимальное значения показателя степени . Адаптация состоит в формировании дополнительного слагаемого к путем его определения на основе локальных статистик в скользящих окрестностях. В качестве параметров, которые будут характеризовать скользящие окрестности, используются функция протяженности гистограммы , энтропия и среднеквадратическое отклонение значений яркостей элементов скользящей окрестности. Поэтому, в зависимости от поставленной задачи, методы данного класса могут отличаться как функцией преобразования локального контраста, так и характеристикой скользящей окрестности. Рассмотрим более детально предложенные локально-адаптивные методы улучшения изображений, проанализируем использование характеристик локальных окрестностей в выражениях преобразования локальных контрастов и обоснуем их выбор. Использование функции протяженности гистограммы Рассмотрим метод повышения качества изображения, который базируется на адаптивном преобразовании локального контраста. Адаптация в данном методе осуществляется на основании анализа такой характеристики как функция протяженности гистограммы элементов локальной скользящей окрестности. Для примера будем считать, что элементы изображения представлены 8-разрядными целыми числами, то есть . Основные шаги реализации этого метода такие. Шаг 1. Вычисляем локальный контраст элемента. Шаг 2. Определяем характеристику локальной скользящей окрестности, используя функцию протяженности гистограммы
где , - соответственно максимальное и минимальное значения яркостей элементов скользящей окрестности с центром в элементе с координатами ; - максимальное значение гистограммы уровней яркости элементов окрестности с центром в элементе с координатами . Шаг 3. Вычисляем степенное преобразование локального контраста, которое благодаря использованию функции протяженности гистограммы скользящей окрестности, имеет адаптивный характер:
где , , - соответственно максимальное и минимальное значения функции протяженности гистограммы для окрестности с центром в элементе с координатами . Шаг 4. Восстанавливаем элемент преобразованного изображения с усиленным контрастом. Рассмотрим более детально реализацию шагов 2 и 3 известного метода. В частности, оценим возможные значения функции протяженности гистограммы скользящей окрестности , подразумевая, что изображениям присущи три характерные типа окрестностей. Первый тип - это однородный участок изображения, который характеризуется примерно одинаковыми уровнями яркостей элементов; гистограмма такой окрестности показана на рис. 2. С рис. 2 видно, что , а следовательно , согласно выражению (1), функция протяженности гистограммы локальной окрестности будет равна нулю. Рис. 2. Гистограмма распределения яркостей элементов однородной окрестности. Локальные контрасты таких участков изображения усиливать не нужно, поскольку это приведет к возникновению дополнительных искажений, обусловленных усилением шумовой составляющей изображения. Для бинарных участков изображения с примерно одинаковым количественным соотношением элементов и в скользящей окрестности , характерна гистограмма яркостей, которая представлена на рис. 3. Рис. 3. Гистограмма распределения яркостей элементов бинарной окрестности. Предполагая, что для темных и светлых элементов бинарной окрестности с примерно равным количественным соотношением максимальное значение гистограммы будет равно
где и - размеры скользящей окрестности , выражение (1) будет иметь вид
Если , , а размеры локальной окрестности такие, что допускают присутствие элементов со всеми возможными уровнями яркостей [0,255], например элементов, тогда функция протяженности гистограммы в соответствии с выражением (4) примет значение . Третьим характерным типом возможной локальной окрестности является такая окрестность, где в примерно одинаковой мере присутствуют элементы со всеми возможными яркостями с диапазона [0,255]. Такие окрестности характеризуются гистограммой равномерного распределения яркостей, которая показана на рис. 4. Тогда согласно изложенных предположений относительно размера локальной окрестности и характера его гистограммы получим, что , . В этом случае функция протяженности гистограммы примет значение . Для такой окрестности будем считать, что она высококонтрастна и не нуждается в усилении контраста. Рис. 4. Гистограмма скользящей окрестности с равномерно распределенными яркостями элементов. Выше были рассмотрены граничные случаи локальных окрестностей. Все другие окрестности характеризуются такими значениями функций протяженности гистограммы, которые находятся в диапазоне [0,255]. На основании анализа рассмотренных типов окрестностей и соответствующих им значений функций протяженности гистограммы, можно более объективно подойти к формированию степенной функции преобразования локального контраста. Наиболее удобно такой анализ проводить с помощью графического представления функции преобразования локального контраста (рис. 5 , прямая 1). Укажем при этом, что и уменьшение отвечает более высокому усилению локального контраста, а увеличение - более слабому его усилению. Рис. 5. Зависимость показателя степени преобразования локального контраста от функции протяженности гистограммы : 1 - в известном подходе [1], 2 - в предложенном методе. С рис. 5 (прямая 1) видно, что максимальное усиление локального контраста испытывают однородные участки изображения ( ), что не всегда желательно. Ведь однородные участки очень чувствительны к помехам, поэтому чрезмерное усиление их контраста приведет к значительным искажениям. Экспериментальные исследования показывают, что максимальному усилению ( ) должны подвергаться локальные контрасты в таких скользящих окрестностях, для которых функция протяженности гистограммы приобретает значения с середины диапазона . В соответствии с изложенными требованиями нами предложено использовать степенную функцию преобразования локального контраста, характер изменения показателя степени которой отвечает представленному на рис. 5 (кривая 2). Выражение для определения (рис. 5 , кривая 2) такое:
где - значение функции протяженности гистограммы, которое отвечает наиболее информативным участкам изображения ; - постоянный коэффициент ( ). Предложенное выражение (5) для модифицированного степенного преобразования позволяет более четко идентифицировать различные типы локальных окрестностей изображения и адаптивно усиливать их контраст в зависимости от значений локальных характеристик этих окрестностей. Метод усиления контраста с использованием функции протяженности гистограммы эффективно используется в обработке широкого класса изображений. Учитывая характеристики скользящих окрестностей удается идентифицировать участки изображения по уровню контрастности и соответствующим образом на них реагировать. Благодаря этому достигается более тонкая обработка мелких деталей. Однако изображения должны отвечать двум требованиям. Они не должны содержать большого количества импульсных выбросов и темные или светлые участки большой площади. Ведь в первом случае это может привести к неадекватному вычислению функции протяженности гистограммы, а во втором - к неэффективному усилению контраста. Поэтому, если изображение не отвечает указанным выше требованиям, следует провести его фильтрацию или (и) градационную коррекцию. %Программа, реализующая метод повышения контрастности изображения %с использованием функции протяженности гистограммы %=======Считывание данных====== clear; L=imread('test.bmp');%Исходное изображение полутоновое, поэтому L(:,:,1)=L(:,:,2)=L(:,:,3); L=L(:,:,1); L=im2double(L); m=15;n=m;n1=fix(n/2);m1=fix(m/2); %Определение размеров локальных окрестностей %=======Преобразование матрицы яркостей изображения для устранения краевого эффекта======= %=======В новых версиях системы Matlab существуют функции, которые реализуют эту процедуру======= a=L(1,1);b=L(1,M);c=L(N,1);d=L(N,M); for i=1:n1; for j=1:m1; L1(i,j)=a; L3(i,j)=b; L6(i,j)=c; L8(i,j)=d; end; end; L2=L(1,1:M); L02=L2; for i=1:n1-1; L2=[L2;L02]; end; L7=L(N,1:M); L07=L7; for i=1:n1-1; L7=[L7;L07]; end; L4=L(1:N,1); L4=L4'; L04=L4; for i=1:m1-1; L4=[L4;L04]; end; L4=L4'; L5=L(1:N,M); L5=L5'; L05=L5; for i=1:m1-1; L5=[L5;L05]; end; L5=L5'; L1=[L1;L4]; L1=[L1;L6]; L1=L1'; L2=[L2;L]; L2=[L2;L7]; L2=L2'; L3=[L3;L5]; L3=[L3;L8]; L3=L3'; L1=[L1;L2]; L1=[L1;L3]; Lr=L1'; clear L2;clear L3;clear L4;clear L5;clear L6; clear L7;clear L8;clear L02;clear L04;clear L05; clear L07;clear L1;clear L; %=======Определение параметров локальной окрестности (функции протяженности гистограммы)======= HP=zeros(N+2*n1,M+2*m1); for i=1+n1:N+n1; disp(i) for j=1+m1:M+m1; if j==1+m1; D=0; for a=-n1:n1; for b=-m1:m1; D(n1+1+a,m1+1+b)=Lr(i+a,j+b); end; end; end; if j>1+m1; for a=-n1:n1; D(n1+1+a,m+1)=Lr(i+a,j+m1); end; D=D(1:n,2:m+1); end; LMIN=min(min(D)); LMAX=max(max(D)); H_lokal=hist(D(:)+1,LMAX-LMIN+1); H_lokal_max=max(H_lokal); clear H_lokal; HP(i,j)=(LMAX-LMIN)/H_lokal_max; clear LMIN; clear LMAX; clear H_lokal_max; end; end; n_filter=3;m_filter=n_filter; F=ones(n_filter,m_filter); Lser=filter2(F,Lroshyrena,'same')/(n_filter*m_filter); clear n_filter;clear m_filter; amax=.7;amin=.5; %=======Определение и преобразование локального контраста с учетом локальных характеристик======= C=(Lr-Lser)./(Lr+Lser+eps); C=abs(C); for i=1+n1:N+n1; disp(i) for j=1+m1:M+m1; if j==1+m1; TM=0; for a=-n1:n1; for b=-m1:m1; TM(n1+1+a,m1+1+b)=HP(i+a,j+b); end; end; end; if j>1+m1; for a=-n1:n1; TM(n1+1+a,m+1)=HP(i+a,j+m1); end; TM=TM(1:n,2:m+1); end; HP_MIN=min(min(TM)); HP_MAX=max(max(TM)); C(i,j)=C(i,j)^(amin+(amax-amin)*(HP(i,j)-HP_MIN)/(HP_MAX-HP_MIN)); if Lroshyrena(i,j)>Lser(i,j); Lvyh(i,j)=Lser(i,j)*(1+C(i,j))/(1-C(i,j)); else Lvyh(i,j)=Lser(i,j)*(1-C(i,j))/(1+C(i,j)); end; if Lvyh(i,j)>=255; Lvyh(i,j)=255; end; if Lvyh(i,j)<=0; Lvyh(i,j)=0; end; end; end; Lvyh=round(Lvyh); Lvyh=Lvyh(1+n1:N+n1,1+m1:M+m1); L=Lr(1+n1:N+n1,1+m1:M+m1); %=======Визуализация======= colormap(gray(255)); subplot(221);image(L');axis('image'); subplot(222);image(Lvyh');axis('image'); Результат работы приведенной программы, реализующей метод повышения контрастности изображений с использованием функции протяженности гистограммы, приведен на рис. 1.
Рис. 1. Обработка изображения методом нелинейного преобразования локальных контрастов с использованием функции протяженности гистограммы: а) исходное аэрокосмическое изображение (в скобках указано количественная оценка визуального качества изображения) - ; б) изображение а, обработанное известным методом - ; в) изображение а после выполнения градационной коррекции - ; г) изображение а, обработанное предложенным методом - . Литература.
В оглавление книги \ К предыдущему разделу \ К следующему разделу |
Всероссийская научная конференция "Проектирование научных и инженерных приложений в среде MATLAB" (май 2002 г.)
|
||
На первую страницу \ Сотрудничество \ MathWorks \ SoftLine \ Exponenta.ru \ Exponenta Pro | ||
E-mail: | ||
Информация на сайте была обновлена 11.05.2004 |
Copyright 2001-2004 SoftLine Co Наши баннеры |